Exercise 7

Solve the differential equation.

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \cos x
$$

Solution

This is a linear inhomogeneous ODE, so the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
\frac{d^{2} y_{c}}{d x^{2}}-2 \frac{d y_{c}}{d x}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad \frac{d y_{c}}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y_{c}}{d x^{2}}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+1=0
$$

Solve for r.

$$
\begin{gathered}
(r-1)^{2}=0 \\
r=\{1\}
\end{gathered}
$$

Two solutions to the ODE are e^{x} and $x e^{x}$. According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
y_{c}(x)=C_{1} e^{x}+C_{2} x e^{x}
$$

C_{1} and C_{2} are arbitrary constants. On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
\frac{d^{2} y_{p}}{d x^{2}}-2 \frac{d y_{p}}{d x}+y_{p}=x \cos x \tag{3}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 1 times cosine, the particular solution is $y_{p}=(A x+B)(C \cos x+D \sin x)$.

$$
\begin{aligned}
y_{p} & =(A x+B)(C \cos x+D \sin x) \\
\frac{d y_{p}}{d x} & =(A)(C \cos x+D \sin x)+(A x+B)(-C \sin x+D \cos x) \\
\frac{d^{2} y_{p}}{d x^{2}} & =(A)(-C \sin x+D \cos x)+(A)(-C \sin x+D \cos x)+(A x+B)(-C \cos x-D \sin x)
\end{aligned}
$$

Substitute these formulas into equation (3).

$$
\begin{aligned}
& {[(A)(-C \sin x+D \cos x)+(A)(-C \sin x+D \cos x)}+(A x+B)(-C \cos x-D \sin x)] \\
&-2[(A)(C \cos x+D \sin x)+(A x+B)(-C \sin x+D \cos x)] \\
&+[(A x+B)(C \cos x+D \sin x)]=x \cos x
\end{aligned}
$$

Simplify the left side.

$$
\left.\begin{array}{rl}
(-2 A C+2 A D-2 B D) \cos x+(-2 A C+2 B C-2 A D) & \sin x
\end{array}\right)
$$

Match the coefficients to get a system of equations for A, B, C, and D.

$$
\begin{aligned}
-2 A C+2 A D-2 B D & =0 \\
-2 A C+2 B C-2 A D & =0 \\
-2 A D & =1 \\
2 A C & =0
\end{aligned}
$$

Solving it yields

$$
A C=0 \quad \text { and } \quad A D=-\frac{1}{2} \quad \text { and } \quad B C=-\frac{1}{2} \quad \text { and } \quad B D=-\frac{1}{2} .
$$

The particular solution is then

$$
\begin{aligned}
y_{p} & =(A x+B)(C \cos x+D \sin x) \\
& =A C x \cos x+A D x \sin x+B C \cos x+B D \sin x \\
& =-\frac{1}{2} x \sin x-\frac{1}{2} \cos x-\frac{1}{2} \sin x .
\end{aligned}
$$

Therefore, the general solution to the original ODE is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{x}+C_{2} x e^{x}-\frac{1}{2} x \sin x-\frac{1}{2} \cos x-\frac{1}{2} \sin x .
\end{aligned}
$$

